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Abstract In this paper, we examine a system of two coupled nonlinear differential
equations that relates the concentrations of carbon dioxide CO2 and phenyl glycidyl
ether in solution. This system is subject to a set of Dirichlet boundary conditions and
a mixed set of Neumann and Dirichlet boundary conditions. We apply the Adomian
decomposition method combined with the Duan–Rach modified recursion scheme to
analytically treat this system of coupled nonlinear boundary value problems. The rapid
convergence of our analytic approximate solutions is demonstrated by graphs of the
objective error analysis instead of comparison to an alternate solution technique alone.
The Adomian decomposition method yields a rapidly convergent, easily computable,
and readily verifiable sequence of analytic approximate solutions that is suitable for
numerical parametric simulations. Thus our sequence of approximate solutions are
shown to identically satisfy the original set of model equations as closely as we please.
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1 Introduction

Carbon dioxide is crucial in plant photosynthesis, the manufacturing of carbonated
soft drinks, the powering of pneumatic systems in robots, used in fire extinguishers,
removing caffeine from coffee, etc. [11,17,18]. Carbon dioxide is a useful gas that
is composed of one carbon atom and two oxygen atoms [17]. Recently, the chemical
fixation of carbon dioxide has become an important research topic, because of the dan-
ger posed by global warming and that the conversion of carbon dioxide into valuable
substances is an extremely attractive solution [11,17,18].

The kinetics of the reaction between CO2 and phenyl glycidyl ether (PGE) in solu-
tion has attracted much interest. Park et al. [18] and Choe et al. [10] have investigated
the chemical absorption of carbon dioxide into PGE solutions containing the catalyst
THA–CP–MS41 in a heterogeneous system. In [17], a cumbersome analytic expres-
sion needlessly involving logarithms for the steady-state concentrations of CO2, PGE
and the flux was determined by using a form of the earlier technique of the Adomian–
Rach modified recursion scheme in the Adomian decomposition method formerly
known as the double decomposition method [5,7,8].

The system of nonlinear differential equations that relates the steady-state concen-
trations of CO2 and PGE was previously established [17] as

d2u(x)

dx2 = α1u(x)v(x)

1 + β1u(x)+ β2v(x)
, (1)

d2v(x)

dx2 = α2u(x)v(x)

1 + β1u(x)+ β2v(x)
, (2)

subject to the set of Dirichlet boundary conditions

u(0) = 1, u(1) = k, (3)

and the mixed set of Neumann and Dirichlet boundary conditions

v′(0) = 0, v(1) = 1, (4)

where the functions u(x) andv(x) are the concentrations of CO2 and PGE, respectively,
α1, α2, β1 and β2 are normalized system parameters, x is the dimensionless distance
as measured from the center, and k is the dimensionless concentration of CO2 at the
surface of the catalyst [17].

In this work, we aim to apply the Adomian decomposition method [3–6,20,23]
combined with the Duan–Rach modified recursion scheme [15,16,21] to systemat-
ically obtain a rapidly convergent analytic approximate solution that is convenient
for numerical simulations. Furthermore, our approach is readily extensible to far more
complicated systems without further ado. The rapid rate of convergence of our approx-
imate solutions is validated by graphs of the error analysis that feature the error remain-
der functions and the maximal error remainder parameters instead of comparison to
an alternate solution technique alone.
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2 The Duan–Rach modified recursion scheme in the Adomian decomposition
method

We rewrite Eqs. (1) and (2) in Adomian’s operator-theoretic form as

Lu = N1u, v, (5)

Lv = N2u, v, (6)

where N j u, v = α j f (u (x) , v (x)) for j = 1, 2, and the linear differential operator
L and the composite nonlinearity are

L (·) = d2

dx2 (·) , f (u (x) , v (x)) = u (x) v (x)

1 + β1u (x)+ β2v (x)
. (7)

Applying the corresponding inverse linear operator

L −1 (·) =
∫ x

0

∫ x

0
(·) dx dx

to both sides of Eqs. (5) and (6) leads to

u (x) = u (0)+ x u′ (0)+ L −1 N1u, v, (8)

v (x) = v (0)+ x v′ (0)+ L −1 N2u, v. (9)

Substituting the known boundary values u (0) = 1, v′ (0) = 0, we obtain the system
of coupled nonlinear Volterra integral equations with two—as yet undetermined—
constants of integration u′ (0) and v (0) that constitutes an intermediate step as

u (x) = 1 + x u′ (0)+ L −1 N1u, v, (10)

v (x) = v (0)+ L −1 N2u, v. (11)

For convenience in subsequent calculations, we define the definite integral operator
as

L −1
1 (·) =

∫ 1

0

∫ x

0
(·) dx dx .

Next we evaluate the two concentrations at the surface x = 1 using the remaining
boundary values

u (1) = k, v (1) = 1,

and Eqs. (10) and (11) to determine the values by formula of the remaining unknown
constants of integration as
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u′ (0) = k − 1 − L −1
1 N1u, v, (12)

v (0) = 1 − L −1
1 N2u, v. (13)

Upon substitution of Eqs. (12) and (13) into Eqs. (10) and (11), we have incorpo-
rated all four boundary conditions to obtain the equivalent system of coupled nonlinear
Fredholm–Volterra integral equations without any undetermined constants of integra-
tion

u (x) = 1 + (k − 1) x − x L −1
1 N1u, v + L −1 N1u, v, (14)

v (x) = 1 − L −1
1 N2u, v + L −1 N2u, v, (15)

or, equivalently,

u (x) = 1 + (k − 1) x − α1x L−1
1 f (u (x) , v (x))+α1L−1 f (u (x) , v (x)) , (16)

v (x) = 1 − α2 L−1
1 f (u (x) , v (x))+ α2L−1 f (u (x) , v (x)) . (17)

Applying the Adomian decomposition series, we decompose the two coupled solu-
tions

u (x) =
∞∑

n=0

un (x), v (x) =
∞∑

n=0

vn (x), (18)

and the nonlinearity as the series of the two-variable Adomian polynomials

f (u (x) , v (x)) =
∞∑

n=0

A n (x), (19)

where the two-variable Adomian polynomials are defined by the formula

An = An(u0, u1, . . . , un; v0, v1, . . . , vn)

= 1

n!
dn

dλn
f

⎛
⎝ n∑

j=0

u jλ
j ,

n∑
j=0

v jλ
j

⎞
⎠

∣∣∣∣∣∣
λ=0

. (20)

Other algorithms for the one-variable and multivariable Adomian polynomials have
been proposed such as in [1,2,6,9,12–14,19,20,22,23]. Duan [12–14] has recently
crafted several new, more efficient algorithms for fast generation of the one-variable
and multivariable Adomian polynomials. For convenience, we list the first five two-
variable Adomian polynomials of the general bivariate function f (u, v) with the
decompositions u = ∑∞

n=0 un, v = ∑∞
n=0 vn as follows,

A0 = f (u0, v0),

A1 = v1 f (0,1)(u0, v0)+ u1 f (1,0)(u0, v0),

123



1058 J Math Chem (2015) 53:1054–1067

A2 = v2 f (0,1) + 1

2
v2

1 f (0,2) + u2 f (1,0) + u1v1 f (1,1) + 1

2
u2

1 f (2,0),

A3 = v3 f (0,1) + v1v2 f (0,2) + 1

6
v3

1 f (0,3) + u3 f (1,0) + (u2v1 + u1v2) f (1,1)

+ 1

2
u1v

2
1 f (1,2) + u1u2 f (2,0) + 1

2
u2

1v1 f (2,1) + 1

6
u3

1 f (3,0),

A4 = v4 f (0,1) +
(
v2

2

2
+ v1v3

)
f (0,2) + 1

2
v2

1v2 f (0,3) + 1

24
v4

1 f (0,4) + u4 f (1,0)

+ (u3v1 + u2v2 + u1v3) f (1,1) +
(

1

2
u2v

2
1 + u1v1v2

)
f (1,2) + 1

6
u1v

3
1 f (1,3)

+
(

u2
2

2
+ u1u3

)
f (2,0) +

(
u1u2v1 + 1

2
u2

1v2

)
f (2,1) + 1

4
u2

1v
2
1 f (2,2)

+ 1

2
u2

1u2 f (3,0) + 1

6
u3

1v1 f (3,1) + 1

24
u4

1 f (4,0),

where we use the notation f (m,n) = f (m,n)(u0, v0) = ∂m+n f
∂um∂vn (u0, v0) as a space-

saving shorthand.
For example, we display the first two Adomian polynomials tailored to the particular

nonlinearity in (7) as

A0 = u0(x)v0(x)

β1u0(x)+ β2v0(x)+ 1
, (21)

A1 = u1(x)v0(x) (β2v0(x)+ 1)+ u0(x)v1(x) (β1u0(x)+ 1)

(β1u0(x)+ β2v0(x)+ 1) 2 . (22)

MATHEMATICA code generating the two-variable Adomian polynomials of a gen-
eral abstract function f (u, v) based on the algorithm in Theorem 1 [14] is listed in
“Appendix 1”.

Upon substitution of the decomposition series (18) and (19) into Eqs. (16) and (17),
we obtain

∞∑
n=0

un (x) = 1 + (k − 1) x − α1x L −1
1

∞∑
n=0

A n (x)+ α1L −1
∞∑

n=0

A n (x), (23)

∞∑
n=0

vn (x) = 1 − α2L −1
1

∞∑
n=0

A n (x)+ α2 L −1
∞∑

n=0

A n (x). (24)

Next we establish the corresponding system of coupled Duan–Rach modified recursion
schemes [15,16] as

u0 (x) = 1,

u1 (x) = (k − 1) x − α1x L −1
1 A 0 (x)+ α1L −1 A 0 (x) ,

u n+2 (x) = −α1x L −1
1 A n+1 (x)+ α1L −1 A n+1 (x) , n ≥ 0, (25)
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v0 (x) = 1,

vn+1 (x) = −α2 L −1
1 A n (x)+ α2L −1 A n (x) , n ≥ 0, (26)

from which we can readily calculate the respective second and third solution compo-
nents as

u1 = − x ((1 − x)α1 + 2(1 − k) (1 + β1 + β2))

2 (1 + β1 + β2)
,

v1 = −
(
1 − x2

)
α2

2 (1 + β1 + β2)
,

u2 = xα1

24 (1 + β1 + β2) 3 (5α2 (1 + β1)+ α1 (1 + β2)+ 4(1 − k) (1 + β2)

× (1 + β1 + β2) −x
((

6 − x2
)
α2 (1 + β1)+ (2 − x)xα1 (1 + β2)

+ 4(1 − k)x (1 + β2) (1 + β1 + β2))) ,

v2 = α2

24 (1 + β1 + β2) 3 (5α2 (1 + β1)+ α1 (1 + β2)+ 4(1 − k) (1 + β2)

× (1 + β1 + β2) −x2
((

6 − x2
)
α2 (1 + β1)+ (2 − x)xα1 (1 + β2)

+ 4(1 − k)x (1 + β2) (1 + β1 + β2))) .

Thus we have effectively decomposed the constants of integration in (10) and (11) by
formula. Furthermore, it becomes a straightforward procedure to automate calculation
of additional solution components using an available computer algebra system such
as MATHEMATICA, MAPLE or MATLAB, etc. by our approach since the analytic
evaluation of all integrals in our subsequent solution components will be trivial, i.e.
integrating powers of the independent variable x . In contrast, we checked that the
analytic integration required for higher-order terms in [17], e.g. even u2(x) and v2(x),
is quite time-consuming even using MATHEMATICA if the integrations include the
parameters β1 and β2. The approximate solution functions as defined by Adomian and
collaborators are

φm+1 (x) =
m∑

n=0

un (x), ψm+1 (x) =
m∑

n=0

vn (x), m ≥ 0. (27)

In order to examine their accuracy, we shall consider the appropriate error remainder
functions

ER 1, n (x) = d2

dx2 φn (x)− α1 f (φn (x) , ψn (x)) ,

ER 2, n (x) = d2

dx2ψn (x)− α2 f (φn (x) , ψn (x)) , (28)

and maximal error remainder parameters
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MER 1, n = max
0 ≤ x ≤ 1

∣∣ER 1, n (x)
∣∣ , MER 2, n = max

0 ≤ x ≤ 1

∣∣ER 2, n (x)
∣∣ , (29)

whenever the solutions are unknown in advance.
We note by the Adomian–Rach modified recursion scheme, also known as the dou-

ble decomposition method, in the Adomian decomposition method such as in [17], that
the calculated solution components incorporate the undetermined coefficients, which
are determined from successively matching the boundary conditions; see “Appendix
2”.

By the Duan–Rach modified recursion scheme, we can easily calculate the solu-
tion components without any undetermined coefficients and with all of the modelling
parameters. The results are shown to be superior for parametric simulations.

3 Numerical simulations

First, we assign α1 = 1, α2 = 2, β1 = 1, β2 = 3 and k = 0.5, then calculate the error
remainder functions, the maximal error remainder parameters and the approximate
solutions.

The curves of the error remainder functions ER1,n(x) and ER2,n(x) versus x for
n = 3, 4, 5 are plotted in Figs. 1 and 2, respectively, where the last curve overlaps
nearly the x-axis.

Fig. 1 Curves of the error
remainder functions ER1,n(x)
versus x for n = 3 (solid line),
n = 4 (dot line) and n = 5 (dash
line)

0.2 0.4 0.6 0.8 1.0
x
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0.004

0.006

0.008

0.010
ER1,n x

Fig. 2 Curves of the error
remainder functions ER2,n(x)
versus x for n = 3 (solid line),
n = 4 (dot line) and n = 5 (dash
line)
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x
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Table 1 The maximal error
remainder parameters MER1, n
and MER2, n

n MER1, n MER2, n

1 0.2 0.4

2 0.0888889 0.177778

3 0.00888889 0.0177778

4 0.00099943 0.00199886

5 0.0000888889 0.000177778

6 8.88889 × 10−6 0.0000177778

7 8.88889 × 10−7 1.77778 × 10−6

8 1.04915 × 10−7 2.09831 × 10−7

9 2.7602 × 10−8 5.5204 × 10−8

10 2.8038 × 10−9 5.6076 × 10−9

Fig. 3 Logarithmic plots of
M E R1,n versus n for n = 1
through 10

2 4 6 8 10
n

10 7

10 5

0.001

0.1

MER1,n

Fig. 4 Logarithmic plots of
M E R2,n versus n for n = 1
through 10

2 4 6 8 10
n

10 6

10 4

0.01

MER2,n

The maximal error remainder parameters MER1,n and MER2,n , for n = 1 through
10, are listed in Table 1. The logarithmic plots of these values are displayed in Figs.
3 and 4, respectively, where the points almost lay on a straight line thus indicating an
approximately exponential rate of convergence.

In Figs. 5 and 6, we plot the curves of the approximate solutions φn(x) and ψn(x)
versus x for n = 2, 3, 4, 5. In Fig. 5, the last three curves nearly overlap and in Fig. 6,
the last two curves nearly overlap.
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Fig. 5 Curves of the
approximate solutions φn(x)
versus x for n = 2 (solid line),
n = 3 (dot line), n = 4 (dash
line) and n = 5 (dot-dash line)
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Fig. 6 Curves of the
approximate solutions ψn(x)
versus x for n = 2 (solid line),
n = 3 (dot line), n = 4 (dash
line) and n = 5 (dot-dash line)
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Next, we consider the enhancement factor of CO2, which is defined in terms of the
flux as

η = − du

dx

∣∣∣∣
x=0

. (30)

We assign β1 = 1, β2 = 3 and k = 0.5, and then calculate the approximation
φ7(x;α1, α2) as parametrized by α1 and α2. Using φ7(x;α1, α2), we obtain the
enhancement factor η as a function of α1 and α2.

In Fig. 7, the surface of the enhancement factor η(α1, α2) is displayed. In Fig. 8,
the gradient field of the enhancement factor η(α1, α2) is shown. It is evident that the
enhancement factor η increases as α1 increases, and decreases as α2 increases.

Similarly, we assignα1 = 1, α2 = 2 and k = 0.5, and then calculate the approxima-
tion φ7(x;β1, β2) as parametrized by β1 and β2. Furthermore, we obtain the enhance-
ment factor η as a function of β1 and β2. In Fig. 9, the surface of the enhancement
factor η(β1, β2) is displayed. In Fig. 10, the gradient field of the enhancement factor
η(β1, β2) is shown. From these figures, we observe that the effect of the parameters
β1 and β2 on the enhancement factor η rapidly weakens as β1 or β2 increases.
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Fig. 7 The surface of the
enhancement factor η(α1, α2)
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Fig. 8 The gradient field of the
enhancement factor η(α1, α2)
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Fig. 9 The surface of the
enhancement factor η(β1, β2)
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Fig. 10 The gradient field of the
enhancement factor η(β1, β2)

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00

0.05

0.10

0.15

0.20

0.25

0.30

4 Conclusions

In this work, we have examined a system of nonlinear differential equations, that relates
the steady-state concentrations of carbon dioxide and PGE in solution, subject to the
prescribed boundary conditions. The proposed approach depends mainly on combining
the Adomian method with the Duan–Rach modified recursion scheme. Our analysis
generated a rapidly convergent sequence of approximations of the concentrations of
carbon dioxide and PGE to a high degree of accuracy. The evaluated approximations
show enhancements over existing techniques where the minimal size of the obtained
errors as well as the illustrated graphs emphasize these improvements.

Moreover, the enhancement factor of carbon dioxide was calculated for a variety of
parameters. The Adomian decomposition method yields a rapidly convergent, easily
computable, and readily verifiable sequence of analytic approximate solutions that
is suitable for numerical parametric simulations. In closing, the proposed analysis
that we applied is validated by its reliability and efficiency to analytically solve and
numerically simulate various chemical engineering reactions.

Acknowledgments This work was supported by the Natural Science Foundation of Shanghai (No.
14ZR1440800) and the Innovation Program of the Shanghai Municipal Education Commission
(No. 14ZZ161).

Appendix 1: MATHEMATICA code for the two-variable Adomian polynomials
based on Theorem 1 [14]

Adth1[M_]:=Module[{},A[0]=f[Subscript[u, 0],Subscript[v, 0]];
For[n=1,n<=M,n++,A[n]=1/n*
Sum[(k+1)*(Subscript[u, k+1]*D[A[n-1-k],Subscript[u, 0]]
+Subscript[v, k+1]*D[A[n-1-k],Subscript[v, 0]]),{k,0,n-1}]];
Table[A[n],{n,0,M}]]
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Appendix 2: The technique used in [17]

Consider the nonlinear differential equations in Eqs. (5) and (6),

Lu = α1 f (u (x) , v (x)) , (31)

Lv = α2 f (u (x) , v (x)) , (32)

where the linear differential operator L and the composite nonlinearity are

L (·) = d2

dx2 (·) , f (u (x) , v (x)) = u (x) v (x)

1 + β1u (x)+ β2v (x)
. (33)

In the double decomposition method, the inverse linear operator L−1 is taken as a
two-fold indefinite integration for second-order differential equations [7,8], i.e.

L−1(·) = C0 + C1x + I 2
x (·) = C0 + C1x +

∫ ∫
(·) dxdx, (34)

where C0 and C1 are the constants of integration, which are called the matching
coefficients, and where I 2

x (·) = ∫ ∫
(·) dxdx denotes pure integrations. Applying the

operator L−1 to both sides of Eqs. (31) and (32) yields the system of coupled nonlinear
integral equations

u(x) = C0 + C1x + α1 I 2
x f (u (x) , v (x)) , (35)

v(x) = D0 + D1x + α2 I 2
x f (u (x) , v (x)) , (36)

where C0, C1, D0, D1 are arbitrary constants of integration to be determined by
decomposition and matching at the boundaries for each stage of approximation.

The double decomposition method decomposes the solution u(x), v(x), the non-
linearity f (u, v), and the matching coefficients Ci and Di as

u(x) =
∞∑

n=0

un(x), v(x) =
∞∑

n=0

vn(x), f (u, v) =
∞∑

n=0

An, (37)

Ci =
∞∑

n=0

Ci,n, Di =
∞∑

n=0

Di,n, i = 0, 1. (38)

Upon substitution of these series into Eqs. (35) and (36), we can design the recursion
scheme as

u0 = C0,0 + C1,0x, v0 = D0,0 + D1,0x,

un+1 = C0,n+1 + C1,n+1x + α1 I 2
x An, n ≥ 0,

vn+1 = D0,n+1 + D1,n+1x + α2 I 2
x An, n ≥ 0. (39)
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Note that these necessary matching coefficients for un+1 and vn+1 were omitted from
recurrence relations in [17].

The constants Ci,n and Di,n , i = 0, 1, are determined by matching each of the partial
sums φn(x) and ψn(x), n = 1, 2, . . . , to their respective boundary values [5,7,8] in
Eqs. (3) and (4). This procedure can be carried out by matching u0, v0 to the given
boundary values in Eqs. (3) and (4) to determine the values of Ci,0 and Di,0, i = 0, 1,
matching u1, v1 to the corresponding homogeneous boundary values u1(0) = u1(1) =
v′

1(0) = v1(1) = 0 to determine the values of Ci,1 and Di,1, i = 0, 1, . . . , and matching
un, vn to the corresponding homogeneous boundary values un(0) = un(1) = v′

n(0) =
vn(1) = 0 to determine the values of Ci,n and Di,n , i = 0, 1.

Matching u0 and v0 to the boundary values in Eqs. (3) and (4) determines

u0 = 1 + (k − 1)x, v0 = 1.

Calculating u1 and v1 using (39) and matching u1 and v1 to the corresponding homo-
geneous boundary values u1(0) = u1(1) = v′

1(0) = v1(1) = 0 determine that

u1 = α1(x − 1)x

2β1
+ α1 (β2 + 1) x

β3
1 (k − 1)2

(β2 + β1k + 1) log (β2 + β1k + 1)

− α1 (β2 + 1)

β3
1 (k − 1)2

(β1 + β2 + β1(k − 1)x + 1) log (β1 + β2 + β1(k − 1)x + 1)

− α1 (β2 + 1)

β3
1 (k − 1)2

(x − 1) (β1 + β2 + 1) log (β1 + β2 + 1) ,

v1 = (x − 1)α2

2(k − 1)β2
1

((k − 1)(1 + x)β1 + 2 (1 + β2))+ (x − 1)α2 (1 + β2)

(k − 1)β2
1

× log (β1 + β2 + 1)+ α2 (1 + β2)

(k − 1)2β3
1

(β2 + β1k + 1) log (β2 + β1k + 1)

− α2 (1 + β2)

(k − 1)2β3
1

(β1 + β2 + β1(k − 1)x + 1) log (β1 + β2 + β1(k − 1)x+1) .

Note that there are several errors in the expressions (B.13) and (B.15) as published in
[17]. We have checked by using MATHEMATICA that it is quite time-consuming to
calculate u2 and v2 and it is not at all feasible to calculate u3 and v3 if the results are
parametrized by β1 and β2.
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